Skip to main contentSkip to footer content

Certified Artificial Intelligence (AI) Practitioner (CAIP)

Overview

Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users. This course includes hands on activities for each topic area.

This course is eligible for the following:

  • CEUs: 4.0

+ Features

  • Specify a general approach to solve a given business problem that uses applied AI and ML.
  • Collect and refine a dataset to prepare it for training and testing.
  • Train and tune a machine learning model.
  • Finalize a machine learning model and present the results to the appropriate audience.
  • Build linear regression models.
  • Build classification models.
  • Build clustering models.
  • Build decision trees and random forests.
  • Build support-vector machines (SVMs).
  • Build artificial neural networks (ANNs).
  • Promote data privacy and ethical practices within AI and ML projects.

+ Prerequisites

A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming. This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.

+ Designed For

The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.

course section